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BRIEF

The problem investigated in this study is that of evaluating psy-
chological tests as aids to the selection of personnel for training and
jobs. When an institution uses a test for the purpose of personnel
selection, some estimate of its value as a decision-making tool is needed
by psychologists and management. The conventional approach to test evalu-
ation, namely, correlational analysis, ignores three important situational
factors: how well the institution could do by chance (commonly called the
“base rate”™), the proportion to be selected from the population (the se-
lection ratio), and the institutional gains and losses resulting from
correct decisions and incorrect decisions.

A method based on statistic decision theory was developed which
handles these factors explicitly and systematically. The method, as
presented, is restricted to the dichotomous (or dichotomized) criterion
case and does not rely on the correlation coefficient as an index of
association between the test and the criterion. The decision-theoretic
method involves the construction of a payoff matrix corresponding to the
contingency table relating the test to the criterion. The cell frequencies

are weighted in a utility equation by the payoff values (utilities) in the




corresponding cells of the payoff matrix. This utility equation represen
a new test evaluation index that directly expresses the utility of the te:

to the institution using it.

Aiso presented is a method based on Brogden's publications on thi
problem. It involves the comparison of criterion groups, e.g., satis-
factory and unsatisfactory, in terms of their utility to the institution
using the selection test. It is called the "utility function™ method
since the criterion is converted to a utility scale.

The three methods (correlational, decision-theoretic, and utility
function) were compared with tests used to select students for teéhnical
schoqls in the U. S. Navy. 5Scaling techniques were developed for the

rmeasurement of values inherent in the Navy situation. Specifically, the
> graduate-fail criterion was translated to a utility scale and the corre-

sponding job areas were scaled on need (or the relative utility of gradu-
g ates to the Navy). Using scale values obtained for the job areas, a pay-

off matrix was constructed for each schoocl on the a%sumption that the

currently used test cutoffs are optimal.

The three methods led to quite different indications regarding th:
utility of the selection tests evaluated. The decision-theoretic and
utility function methods agreed in terms of the proportion improvement
over chance prediction provided by the tests, while the :orrelational
method tended to underestimate this proportion. 1In terms of utility, the i
decision-theoretic method indicated the tests were worth much more to the
Navy than did the other two methods.

In addition to the above, the following conclusions were stated:

i SN




(1) Statistical decision theory is well suited to the usual selection

» . testing situation. (2) Psychological scaling methods provide a solution
for the measurement of values required in the épplication of the decision-
theoretic approach tc test cvaluation. (3) Supplementation of corre-
lational analysis of tests with decision-theoretic analysis is 1likely to
lead to new insights into the utility and use of tests for personnel

decisions.

i




TABLE OF CONTENTS

LISTOme....."......'......Q
LIST OF TLLUSTRATIONS . . & ¢ & ¢ o ¢ o o s o s o o o &

Chapter
I. STATEMENT OF THE PROBLEM AND THEORETICAL
BACKGROUND . L] L] . L] ] L] [ ) L] [ ] L] [ ] . ] L] . L] -

Background of two Diverse Approaches to Test
Evaluation
Plan of the Study

II. LIMITATIONS OF THE CORRELATIONAL APPROACHE . . .

Validity Coefficients are Independent
of the Selection Ratio

Validity Coefficients are Independent of
the A Priori Probability

All Errors of Measurement Attenuate the
Validity Coefficient

Validity Coefficients do not Adequately
Reflect Institutional Gains and Losses

III. SELECTION TESTS AND STATISTICAL DECISION THEORY
IV. TWO NEW METHODS ¥OR EVALUATING SELECTION TESTS .

Decision-Theoretic Method
Utility Function Method

V. MEASUREMENT OF VALUES INHERENT IN TEST
EVMATION lllll . L] L L] L2 L] * L] L L [ ] . L]

Scaling Job Areas on Need
Conversion of the Graduate-Fail Criterion
to a Utility Scale
VI. PAYOFF MATRICES AND A WAY TO DETERMINE THEM . .

Utility of a Correct Acceptance
Utility of an Erroneous Reject.ion

15

2

32

42

>3




Chapter

VII.

VIII.

IX.

Utility of an Erroneous Acceptance and

the Utility of a Correct Re
Determining the Payoff{ Matric

AN EMPIRICAL TRYOUT . . . . .
"he Schools Sampled
The Selection Tests
The Results

DISCUSSION « ¢« « v o « & & & &

SUMMARY AND CONCLUSIONS . . .

BIBLIOGRAPHY ¢ « &+ o ¢ ¢ o ¢ o o o o &

APPENDICES

A.

ALTERATION OF THE PAYOFF MATRIX

Jection
es for this Study

THE GUESTIONNAIRE USED IN CONVERTING THE GRADUATE-FAIL

CRITERION TO A UTILITY SCALE

THE QUESTIONKAIRE USED IN THE PROBABILITY COMPARISON

SCALING METHOD . + « . . .

THE QUESTIONNATRE USED IN MEASURING THE UTILITY OF
GRADUATES BY THE MAGNITUDE ESTIMATION METHOD . . . .

SUCCESS FUNCTION CALCULATIONS

Page

64

(¥
83

91

9k

106

108

BT




-

T ST T I gy e

Table

10.

11.

12.

13.

14,

LIST OF TABLES

The Proportion Who Will be Satisractory Among Those
Selected, When the A Priori Prorability is .Suv . .

The Proportion Who Will be Satisfa-tcry Among Those
Selected, When the Selection Ratic is .50 . . . .

A Hypothetical Contingency Table . . o+ + & o« ¢ o + &
A HRypothetical Payoff Matrix . . ¢« - ¢« ¢ ¢ ¢ ¢ & « &
A Modified Version of a Hypothetical Payoff Matrix .
Mean Indifference Points, Average Deviations, and the

Ratios Used in Calculating ¢! Se¢ale Values for
the Probability Comparison Scaling Method . . . .

Scale Values and Relative Utilities of School Graduates

as Scale Values Obtained Througn the Probability
Comparison Scaling Method . « « ¢« o« ¢ ¢ s o o o

Need Ratings, Medlans, Means, and Average Deviations on

Ten Job Areas Obtained from mNine Area Personnel
leers - L] L] L] [ ] L] L] [ ] » L] . . L ] L] L ] 1 » [ ] L] L *

The Utility of a Fail Relative tc the Utility
Of a Grmuate L] L] L) L] . . L] L . L] L] . L] L] L] L] . .

Payoff Matrix Utilities and Antecedent Statistics for
Nine School Samples . . . 50000080000 O

The Three Evaluation Indices and Closely Related Sta-
tistics for Samples from ..zven Pavy Schools . . .

The Utility of Selection Tests a: Estimated by the three

Approaches: Correlaticnal, Ulility Function, and

mcis%on‘meomtic-tounoo--o--on.n..

A "Chence" 2 X 2 Table Showing the Figurative Shifts

of Persons a Valid Test Would Make . « ¢« ¢ o o o o o »

A Hypothetical Paycif Matrix . « « « ¢« o ¢ 4 o ¢ o o o &

Page

17

18
35
35
37

W7
49 }

50

8 #

62

70

T

78




Table

15.
16.

A Hypothetical Contingency Table . . . . . o & + o o o . .

Worktable in the Computation of the

Success Function Quantities

B Al vE i e
] ]

Page
78

108




r&

1.

LIST OF ILLUSTRATIONS

'Figure

An Exemplary Scatter Plot Showing the Regression Line
and the Cutoff Used in Making Decisions . . . . .

A Scatter Plot Showing the Four Decision-Related Areas
Determined by the Cutoff and the Regression Line .

The Probability Density Function of Fail and Succeed .
The Standard Payoff Matrix . . « &+ o ¢« o &+ ¢« s o o & o
The Standard 2 X 2 Contingency Table . « ¢« « « ¢+ « o &

The Modified Payoff Matrix Obtained by Subtracting U

from the First Row and U3 from the Second Row . .~

The Standard Payoff Matrix for a Dichotomous Decision
and a Dichotomous Cutcome . . + « ¢ ¢« ¢ ¢ ¢ « o o &

A Modified Payoff Matrix Obtained by Adding -U_. to the
Entries in the Bottom Row of Figure 7 « « «3. . o

’

Page

2l
26

32
33

34

54

58




o e e 5 ¢

CHAPTER I
STATEMENT OF THE PROBLFM AND THEORETICAL BACKGROUND

The problem investigated in this study is that of evaluating
psychological tests as aids to the selection of personnel for training
and jobs. When an institution uses a test for the purpose of personnel
selection, some estimate of its value as a decision-making tool is
needed by psychologists and management. Tbe conventional approach to
test evaluation, namely, correlational analysis, ignores three impor-
tant situational factors: how well the institution could do by chance
(commonly called the "base rate"), the proportion to be selected from
the population (the selection ratio), and the institutional gains and
losses resulting from correct decisions and iucorrect decisions.

In an attempt to contribute to more adequate test evaluation,
three tasks are undertaken in this study:

(1) Demonstration of the need for a new approach to selection
test evaluation.

(2) Development of a mathematically rigorous yet practical
approach to selection test evaluation which explicitly utilizes infor-
mation about the btase rate, selection ratio, and institutional gains
and losses.

(3) Empirical tryout of the test evaluation approach developed
in this study.

It is assumed throughout that to "evaluate" a test means to
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determine its value for a specific decision in a specific applied situ-

ation.

Background of two Diverse Approaches to Test Evaluation

The Conventional Approach

Personnel tests are typically evaluated by determining the
correlation between the test and a criterion,usually some measure of
performance. The resultant coefficient is commonly called the validity
coefficient. Several indices heve been developed for interpreting va-
lidity coefficienﬁs; the one having the longest history is the "index

of forecasting efficiency," E.

E=1-V1-/%
where r is the correlation between the predictor and the criterion.
This jndex compares the standard error of criterion scores predicted
by means of the test to the standard error of chance estimates. The
proportionate reduction of the standard error is taken as a measure of
the value of the test.

The "coefficient of determination,” 52, is another index that
is used to evaluate tests. This index expresses the ratio of predicted
variance in the criterion to the total variance. Use of this index and
the index of forecasting efficiency requires thatlthe correlation be
reasonably high {about .50) in order to conclude that the test is sub-
stantially beneficial. The index of forecasting efficiency describes

a test with such validity as predicting only 13 per cent better than
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chance, while the coefficient of determination describes such a test as
accounting for 25 per cent of the variance in the criterion.
Tne major variation on this approach is due to Brogden (1946).

He demonstrated mgthematically--through manipulation of the f{ormulas

for r--that r, not E or 52, is a direct measure of the proportion
improvement over chance prediction afforded by a selection test. Thus,
an r of .05 indicates that the test provides five per cent of the improve-
ment over chance that a perfect test would provide; an r of.50, 50 per j
cent; an r of .95, 95 per cent. This means, if the correlational approach
is valid, that the units on the r scale are equal in value to the insti-
tution using the test, a great departure from the implications of E and

2

r  that the units near 1.00 are much more important than the units near

zero. (For example, E is .0ulk greater for an r of .10 than for an r of

.05, while it is .12 greater for an r of .Y5 than for an rof .90. This !
F‘ implies that the units betwcen .90 and .$5 are 30 times as important to

the institution as the units between .05 and .10.)

Sutsequently, Brogden (1y49) developed an index of selection
test value that avoided some of the restrictive assumptions of r,
namely, normal distributions and linear regression. When the empirical

data conform to these ussurptions, Brogden's index theoretically equals

r. He also advocated use of utility scales as criteria in place cf con- ’
ventional measures of performance. J
. Crapter Il is devoted to pointing out some of the limitations

of the correlational approach. A method based on Brogden's approach is
g developed and presented in Chapter IV. It is called the "utility function"

method.




The Decision-Theoretic Approach

Taylor and Russell (1939) took the first major step toward the
decision-theoretic approach. They contended that the value of a test
va;ies with the particular decision to be made, and that the problem
is one of improving selection rather than of simply raising the cor-
relation of a test with some criterion measure. They showed that
considerable benefit can be obtained from tests with rather low va-
1idity. Benefit was defined as the difference between the proportion
of employees likely to be "satisfactory" before and after selection by
means of the test. This difference was as much dependent on the a
priori probability (commonly called the base rate) and the selection
ratio as it was upon the validity coefficient. (This is demonstrated
in Chapter 1I.) .

The next major advance in this approach came 18 years later

with the publication of the monograph Psychological Tests and Personnel

" Decisions by Cronbach and Gleser (1957). Cronbach and Gleser took the
position that the ultimate purpose of any personnel testing program is
to assist 1n.making decisions in regard to what saould be done with an

individual, and that the soundest approach to evaluating a test or

testing program i1s through determining the benefits which accrue to

the institution or individual as a result of the decisions which have

P

been made. These writers used the concept of "utility" as a measure
of test value and defined it as the benefits which accrue from a set d j

of decisions less the total costs which are incurred in the decision-

maxring process. Thus, this approach is a pragmatic one stressing the
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conseguences of direct action (selection decisions) instead of abstract

l standards ol predictive efficiency.

' The most formidable and complex aspect of carrying out this

! approach in practice is quantifying the relative utility of decisions
outcomes. Cronbach and Gleser (1957) make no contrivution to the sol-
ution of this problem, other than pointing to it and discussing its

i relevence. However, there is an extensive history of value measurement

and psychological scaling which is directly applicatZe. The present

H
£

study attempts to draw on this knowledge fcr a solution of the test
evaluation problem.
It should be noted that decision theory did not introduce the

problem of values into the decision process und hence into personnel

selection. It does, however, make it explicit. Value systems have
always entered into decisions, but they were nct heretofore clearly j

recognized or systematically handled.

Plan of EEE Stugx

Chapter II is devoted tc demonstrating some of the limitations
of the correlational approach for evaluating selectiion tests. Then
in Chapter III1 personnel selection on the basis of psychological tests
is presented in statistical decision theory terms. It is shown that

this theory treats the base rate, selection ratio and institutional

gains and losses explicitly and systematically. This formulation of

selection test theory, unlike the Cronbach and Gleser one, is restricted

. to the dichotomous (or dichotomized) criterion case and does not rely on
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the correlation coefficient as an index of association between the test
and the criterion.

T™wo new indices for evaluating selection tests are developed
in Chapter IV. One is based on statistical decision theory as pre-
sented in Chapter III and the other is based on Brogden's approach (1949).

The next two chapters, V and VI, deal with utilities and ways to
measure them. Two psychological scaling methods are described and applied
in an empirical situation. A way to determine payoff matrices given
these scale values is presented. This method is applied to the scale
values and the final payoff matrices are determined.

An empirical tryout of the new indices is reported in Chapter
VII. Selection test scores and final grades were obtained for large
samples of students in U. S. Navy technical schools. The index values,
as well as r and E, are presented and compared in terms of their indi-

cations of the predictive efficiency and utility of the selection tests.
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CHAPTER 11
LIMITATIONS OF THE CORRELATIONAJ. APPROACH

There can be no doubt that validity coefficients dominate the
test evaluation scene. Of the 426 abstracts in the Handbook of Em-

ployce Selection (1950), 236 use a validity coefficient as the sole

measure of test value. Manuals of published tests rarely report any-
thing on test value except validity coeflicients. Only about one-half

of the reviews of aptitude tests in the Fifth Mental Measurement Year-

book (1959) cite any evidence of test value cther than validity co-
efficients. Of the 32 abstracts in the "Validity Information Exchange"

of Personnel Psychclogy in 195G, not a single one reported any numerical

analysis indicating test value except validity coefficients.

The inappropriasteness of validity coefficients as selection
test evaluation indices is due to the following four limitations. (In
each cace the statistical assumptions underlying validity coefficients,
namely, normality, linearity, and homoscedasticity are granted. Since
both of the special product-rioment correlation coefficients recommended
under these assumpt.ions--rb and rtet--are approximations to a Pearson
r and are generally equivalent to it when these assumptions are true

[Guilford, 1956, pp. 297-310], the limitations apply to them as well.

The question as to whether the limitations also epply to phi is not

raised because point distributions, or "genuine dichotomies,” are not

discussed.)
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Validity gggfficients are Independent
of the Selection Ratio

The selection retio is the proportion of applicants (or pop-
ulation tested) to be acceﬁted. It may be any prorortion between zero
and 1.00. The validity coefficient is independent of the selection
ratio but test value is not. Consider Table 1 where tﬁe entries are
the proportion of accepted applicants who are satisfactory in terms of
Jjob proficiency. These entries can be compared with the a priori prob-
ability .50 which is the proportion that would have been satisfactory
had selection been random. The variation in each row shows ari-
ation in test value which is not accounted for by the correlation
between test score and job proficiency. Take for instance the row
pertaining to an r of .50; if the selection ratio is .05, 86 per cent
will be satisfactory, a sizeable increase over the a priori probability;
if the selection ratio is .95, 52 per cent will be satisfactory, a very
slight improvement over the a priori probability. The correlation may
not adequately indicate the value of the test in any specific situation.
It can be seen from the table that a test with almost any validity may
or may not be of much value depending upon the selection ratio.

Validity Coefficients are Independent
of the A Priori Probability

The a priori probability is the propcrtion who will be satis-
factory if selection is random. Test value is very much dependent upon
the a priori probability but validty coefficients are not. Table 2 will

clarify this. As in Table 1 the entries are the proportions of accepted



TABLE 1

THE PROPORTION WHO WILL BE SATISFACTORY AMONG THOSE
SELECTED, WHFN THE A PRIORI PROBABILITY IS .50
(FROM TAYLOR AND RUSSELL, 1939)
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Selection Ratio

r .05 .10 .20 .30 .40 .50 .60 .70 .80 .90 .95
.00 .50 50 .50 .50 .50 .50 .50 .50 .50 .50 .50
.05 .54 Sk .53 52 .52 .52 51 .51 .51 .50 .50
.10 .58 .57 .56 .55 .5k .53 .53 .52 .51 .51 .50
.15 .63 61 .58 .57 .56 .55 54 .53 52 .51 .51
.20 .67 .64 .61 .59 .58 .56 .55 .54 .53 .52 .51
.25 .70 .67 .64 .62 .60 .58 .56 .55. .54 .52 .51
.30 LTh .7 .67 .64 .62 .60 .58 .56 .54 .52 .51
.35 .78 T4 .70 .66 .64 .61 .59 .57 .55 .53 .51
Lo .82 .78 .73 .69 66 .63 .61 .58 .56 .53 .52
.45 .85 81 .75 .0 .68 .65 .62 .59 .56 .53 .52
.50 .88 B4 .78  .TH 7 .67 63 .60 .57 .54 .52
55 .91 .87 .81 .76 .72 .69 .65 .61 .58 .54 .52
.60 .94 .90 .84 .79 .73 .70 .66 .62 .59 .54 .52
.65 .96 .92 .87 .82 .11 .73 .68 .64 .59 .55 .52
.70 .98 .95 .9 .8 .80 .75 .70 .65 .60 .55 .53
T5 .99 .97 .92 .87 .82 .71 .72 .66 .61 .55 .53
.80 1.00 9 .95 .9 .8 .80 .73 .67 .61 .55 .53
.85 1.00 .9 .97 .9 .88 .82 .76 .62 .62 .55 .53
.90 1.00 1.00 .99 .97 .92 .86 7 .70 .62 .56 .53
.95 1.00 1.00 1.00 .99 .9% .9 .81 .71 .63 .56 .53
1.00 1.00 1.00 1.00 1.00 1.00 1.00 .83 .71 .63 .56 .53
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TABLE 2

THE PROPORTION WHO WILL BE SATISFACTORY AMONG THOSE

SELECTED, WHEN THE SELECTION RATIO IS .50

(FROM TAYLOR AND RUSSELL, 1939)

A Priori Probability

18

r .05 .10 .20 .30 .k .50 80 .90 .95
.00 .05 .10 .20 .30 .0 .50 .60 80 .90 .95
.05 .05 A1 .22 .31 k2 52 .62 .1 .8 91 .95
.10 .06 A1 .22 .33 .43 .53 .63 .73 .82 .91 .96
.15 .06 12 .23 .3k k5 .55 .65 .74 .83 .92 .96
.20 .07 A3 .25 .36 .6 .56 .66 .76 .84 .93 .97
.25 07 .13 .26 .37 .48 .58 .68 .77 .8 .93 .97
.30 .07 Ak 27 .38 b9 .60 .69 .78 .87 .94 .97
.35 .08 15 .28 .0 51 .61 .M 8% .89 .95 .98
.40 .08 16 .29 .41 .53 .63 .T3 81 .89 .95 .98
45 .08 16 .30 .43 .54 .65 .74 .83 .90 .9 .98
.50 .09 A7 .31 Lk .56 .67 .76 .84 .91 .97 .99
.55 .09 A7 .32 .46 58 .69 .78 86 .92 .97 .99
.60 .09 18 .3k .47 60 .70 .3 87 .94 .98 .99
.65 .10 .18 .35 .49 62 .73 .8 89 .95 .98 1.00
.70 .10 19 .36 .51 64 .75 .84 91 .96 .99 1.00
-5 .10 19 .37 .52 .66 .77 .86 92 .97 .99 1.00
.80 .10 .20 .38 .54 68 .80 .88 9% .98 1.00 1.00
.85 .10 20 .39 .56 n .82 .91 .96 .99 1.00 1.00
.90 .10 .20 .k 58 % .86 .94 .98 1.00 1.00 1.00
.95 .10 .20 .k .60 77 .99 .97 .99 1.00 1.00 1.00
1.00 .10 .20 .Wo 60 .80 1.00 1.00 1.00 1.00 1.00 1.00
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soplicants who are satisfactory in terms of job proficiency. Comparison
of each entry with the appropriate a priori probability, i.e., the one
that heads the column in which the entry is located, provides a meaning-
ful indication of test value. The difference between the a priori
probability and an entry is the improvemenc over chance which the pre-
dictor makes possible. The variation in these differences within any
row is the variation in test value that is not accounted for by the
validity coefficient which heads that row. For example, the differences
between the & priori probubilities and the entries in the row pertaining
to an r of .50 are .04, .07, .11, .14, .16, 17, .1 .14, .11, .07,

.Ok. These differences for an r of .40 are .J5, .10, .18, .24, .26,
305 +28; 24y 15, .10, 05.

We may conclude therefore, that the validity coefficient may
not adequately represent the value of a test in a specific situation.
Even a very high correlation is not very good evidence that the test is
worth much. A test that correlates .90 with a criterion may be worth no
more than a test * 1t correlates .30 with a criterion: when the first
criterion has an a priori probability of .10 or .90 and the second
criterion has an a priori probability of .50--the differences between
the a priori probabilities and the corresponding entries in the table
are egual.

All Errors of Measurement Attenuate
the Validity Coefficient

wher. all observations in the criterion-test plct fall in a

straight line, the correlation is perfect, i.e., r = 1.00. Any
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deviations from a straight line result in an r less than 1.00. Such
deviations are said to "attenuate" r. Therefore, when r, or any corre-
lation coefficlent derived from r such as the biserial r and the
tetrachoric r, is used as an evaluation index, the assumption is im-
Plicit that all deviations from the line representing perfect correlation
are important. In other words all such deviations are assumed to have

practical significance. It can be argued, however, that only deviations

wvhich affect the decision for which the test is used should attenuate
the evaluation index.

When a psychological test is used as an aid in making decisions,
the most common practice is to set a cutoff on the test scale and make
one decision sbout persons who recelve & score above that point and the

complementary decision about persons who receive a score below that

point. 1In the personnel selection situation the decisions are to

accept or to reject the persons for the assignment. Such a situation

{ is depicted in Figure 1. The cutoff is labeled X+ The line passing

Criterion

Reject xc Accept
Test

Fig. l.--An exemplary scatter plot showing the regression
line and the cutoff used in making decisions.
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through the plot is the regression line, the line of best fit in a
least-squares sense (Guilford, 1956, p. 366). If a person whose score
on the test exceeds x, receives a score located at yl on the criterion,
the test could be said to have made an erroneous decision since, had
the test predicted perfectly, this person would have been rejected.
However, if this "accepted" person received a criterion score above
Yor regardless of which one, the decision based on the test must be
considered correct. Similarly, the decision to reject a person must
be considered correct if his criterion score is below Yo

The establishment of, and adherence to, a cutoff divides the
scatter plot into four areas shown in Figure 2. Deviations from the

regression line in areas B and C are not errors and should not attenuate

Criterion

Fig. 2.--A scatter plot showing the four decision-
related areas determined by the cutoff and the regression line.

the evaluation index if it is to be taken as an estimate of the value
of the test in this decision situation. Only deviations which lead to

an erroneous decision should be considered errors. These are

a— — — "

3
i
{
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observations which fall in areas A and D. Validity coefficients, of
course, consider every observation that falls off the regression line
as an error regardless of its importance to the decision.

Furthermore, the size of a deviation from the regression line
in areas B and C is irrelevant. All observations in each of these
cells should receive equal weight in the evaluation index since they
are all equally correct--a perfect test would have led to the same
decision in every case and to, therefore, the same consecquences. This
is not true cf the validity coefficient, which weights c¢bservations in
proportion to the size of their deviations from the regression line.

It seems reasonable tc contend that differential weighting within these
areas is illogical when attempting to determine the value of a test for
a dichotomous decision.

Validity Coefficients do not Adequately Reflect
Institutional Gains and Losses

A validity coefficient in selection testing is an index of
strength of predictive association between a selection test and a
criterion (usually some measure of performance). As such, the only
link with institutional gains and losses is through the criterion.
Inplicit in the use of r as an evaluation index is the assumption that
the utility function of the criterion is linear, i.e., that equal in-
crements of tﬁe criterion represent equal 1nc£ements of utility or
value to the institution using the test. This assumption is rarely

tested with quantitative research. In fact, it is rarely mentioned

o 4
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in the psychometrics literature.

. Following the logic of the previous section, a more reasonable
assumption in general for selection tests would be that the utility
function is stepwise about the point on the criterion corresponding
to the test cutoff. Ccnsideration of this point is what usually
leads to the choice of the cutoff. It seems reasonable to expect the
criterion units around this point to be more important to the institution
than thocse far above or below this point.

Actually, of course, the shape of the utility function of the
criterion in an applied situation is an empirical question to be
answvered ideally through research. In the absence of such research
the moust reasonatle assumption should be stated and an evaluation index

- used which Jdoes not violate that assumption. In selection test evalu-
ation it would seem that any evaluation index based on product-moment
correlation theory should be avoided.

Another point mentioned in the previous section is that obser-
vations which fall of{ the regression line are weighted by the validity
coefficient in proportion to their distance from the regression line.
Institutional gains and losses are not expressly taken into account.
The two extreme types of deviations are commonly called false positives
and false negatives. (In subsequent chapters these are called erroneous
acceptees and ;rroneous rejectees.) The implicit assumption in cor-
relational analysis is that these are equally costly to the institution
using the test. Whether or not they are equally costly is an empirical
question. Their actual cost 1o the institution should be determined

through research.




2k

In this chapter some of the inadequacies of the conventional {
approach to selection test evaluation have been discussed showing that
8 new approachris needed and that a more adequate approach should handle
the following factors:

(1) selection ratio,

(2) a priori probability,

(3) institutional gains and losses.

The next chapter presents the theoretical foundation of an
approach based on statistical decision theory which handles these

factors explicitly and systematically.
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CHAPTER II1
SELFCTION TESTS AND STATISTICAL DECISION THEORY

The monograph by Cronbach and Gleser (1957) was the first and
most direct, large scale restatement of test evaluation theory in the
decision-theoretic framework. The present chapter outlines & somewhat
simpler, more straightforward approach to what Cronbach and Gleser call
"selection decisions with single-stage testing,” which, unlike their
approach, does not rely on correlation coefficients. It is restricted
to situations in which the criterion is dichotomous (or dichotomized)
and the test score is continuous.

Statistical decision theory specifies the optimum decision
in a situation where one must choose between two alternative statistical
hypotheses on the basis of an observed event. In particular, it spec-
ifies the optimum cutoff, along the continuum on which the observed
events are arranged, as a function of (a) the a priori probabilities
of the two hypotheses, (b) the values and costs associated with the
various decision outcomes, and (c) the amount of overlap of the dis-
tributions that correspond to the hypotheses. See especially Chernoff
and Moses (1959), Good (1962), Mar.-hak (1954), and Swetts et al. (1961).

In appiied psychology, selection tests are most often used to
make a simple yes-no declsion in terms of such things as h;ring, pro-
motion, training, etc. A particular dichotomous decision represents

predictions (or hypotheses) based on a test score. In Figure 3 test




score 1s labeled x and plotted on the abscissa. The left-hand dis-

tribution, labeled fF(x), is the probability density function of x
given a person who would "fail." The right-hand distribution is the
provability density function of x given a person who would "succeed."
(Probavility density functions are used, rather than probability
functions, since x is assumed to be continuous.) Although the distri-
butions appear to be normal and equally variant, the selection test

model presented below assumes neither.
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Fig. 3.--The probability density function of Fail and Succeed.

The basic decision is whether a given testi. score arises from
one distribution or the other, or, equivalently, the relative probabi-
lities fhat a person obtaining that score will succeed or fail. It is
desirable to establish a standard, a cutoff xc on the continuun of test
scores, to which any given score Xy can be related. If it is found for
the i-th test’score, x, that x> X the decision is to "accept"; if
A < xc, the decision is to "reject.®

In the lenguage of statistical decision theory a subset of all

the scores, namely a Critical Region A (accept), is chosen such that a
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test score in this subset leads to acceptance of the Hypothesis S, to
the prediction that the person will succeed. All other scores are in
the complementary subset R (reject); these iead to rejection of the
Hypothesis S, or, equivalently, to the acceptance of the Hypothesis F,
to predict the person will fail. The Critical Region A, with reference
to Figure 3, consists of the values of x t0o the right of some cutoff xc-

The decision outcome may be a correct acceptance (A,S--the
jJoint occurrence of a score in Region A and success), a correct re-
Jection (R,F), an erroneous rejection (R,S), or an erroneous acceptance
(A,F). If the a priori probability of a success and the parameters
of the distributions of Figure 3 are fixed, the choice of a cutoff
value X, completely determines the probability of each of these out-
comes.

Clearly, the four probabilities are interdependent. For ex-
ample, an increase in the probability of a correct acceptance, P(A,S),
can be achieved only by accepting an !ncrease in the probability of an

erroneous acceptance, P(A,F), and deccreases in the other probabilities,

P(R,S) and P(R,F). Thus, a given cutoff yields a particular balance
among the probabilities of the four possible outcomes; conversely, the
balance desired in any instance will determine the optimum location of
the cutoff. Now one may desire the balance that maximizes the expected
value of decisions where the four possible outcomes have individual

utilities. One may, however, desire a bpalance that maximizes some

other quantity--i.e., a balanc: that is optimum according to some




28

other definition of optimum--in which case a different cutoff will be
appropriate. One may, for example, want to maximize P(A,S) while
satisfying a restriction on P(A,F), as one typically does when as

an experimenter one assumes an .05 or .0l level of confidence. Al:
nately, one may want to maximize the number of correct decisions.

The manner of specifying the optimum cutoff will be illustrated
for just one of these definitions of optimum, namely, the maximization
of the total expected value (or utility) of a decision in a situation
where the four possible outcomes of a decision have individual utilities
associated with them. The expected utility (EU) of a strategy is
defined in statistical decision theory as the sum, over the potential
outcomes of a decision, of the products of probability of outicome and

the desirability (utility) of outcome:
EU = P(A,S)UA,S + P(A,F)UA’F + P(R,F)UR,F + P(R,S)UR,S.

In this equation U s’ are the utilities of a

V] U
A,S’ "A,F’ UR,F’ R,
correct acceptance, an erroneous acceptance, a correct rejection, and
an erroneous reJjection, respectively. For any observed value, xi,the

expected utility of the decision to accept is:

EU, = P(S]xi)UA’s + P(F|xi)UA,F’

where P(Slxi) is the probability of a "success" conditional upon, or
given, Xx,; P(lei) is the probability of a "fail," given X, - Similarly,

the expected utility of the decision tc reject is given by

Evp = P(lei)UR,F + P(Slxi)UR,S.
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In statistical decision theory the optimum cutoff is specified

in terms of the likelihood ratio:

iy R

£ (x)
¢ . S
! Ax) = m,

which 1s the relative probability that a person obtaining sccre x will
succeed or fail. It will be shown that the optimum cutoff{ can be
specified by some value of X(x), provided that (1) )(x) is monotonic
increasing with x and (2) the utilities of correct Jdecisions are greater
than the utilities of the complimentary erroneous decisions, i.e.,

U

> >
A,S UR and U U

»S R,F AF’
Given these conditions, EUA will equal EUR at the optimum
cutoff, xc, since it is the point on the test score scale where it
maxes no difference whether the testee is accepted or rejected--the
expected payoff is the same in either case. Thus
- +

P(Slxi)UA’s+P(F|xi)UA’F P(lei)UR,F P(Slxi)UR’s (1)

or ' ;
o = - 0 2

P(S|xi)(UA,s Up,s’ P(lei)(UR'F Uy 5 (2)

Cross multiplying ylelds

P(slx)  (Up ¢ = Uy ), (3)
PEFIx) " (U, o= U oI

llow according to Bayes' rule (Good, 1962), the likelihood ratio,)(x),

for any x, ¢an be expressed as
* P(F)P(slx,)

) * ST, )

e et - i
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Multiplying both sides of Equation (3) by P(F)/P(S) yields

PFIP(s|x;)  P(F)(Up ¢ - U, o) (5)

PEIR(FIx,) ~ PRI, o= U JJ

The left-hand term of Equation (5) is the likelihood ratio given 1.n
Equation (4). Thus, the likelihood ratio at the optimum cutoff has
been shown to be equal to the right-hand term in Equation (5). That
1s, it is the point on the x continuum where Equation (5) is true.

The optimum cutoff can be specified by some value B of X(x).
This value can now be given as

P(F)(UR,F - UAL)

5T P(S)(Uy o - Up o)’ (6)

since, when \(x) > B, EUA > EUR’

can be seen by noting that when X(x) > B this inequality will also be

and when \(x) < B, EU, < EUp. This

true of Equations (5), (3), (2), and (1); consequently m, > EUR'

Similarly, when \(x) « B this inequality will be true of the same

equations, and EUA< EUR. The decision should therefore be to "accept”

vhenever \(x) > B and to "reject” whenever A(x) < B. The former will
be true only vwhen x > X, and the latter only when x < Xy pProvided

that \(x) 1s monotonic increasing with x, U

A,S > UR,S’ and U

RF

and the Critical

Thus the Criticel Reglion A lies to the right of Xo
Region R lies to the left of X,
This constitutes the model of test-based selection decisions

from the standpoint of statistical decision theory. The cutoff (and

therefore, the selection ratio), a priori probability and institutional

S S S il
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galns and losses are central factors. An evaluation index tas~l on this
model is presented in the next chapter. Chapters V and VI deal with

utilities and ways to measure them.
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CHAPTER IV
TWO NEW METHODS FOR EVALUATING SELFCTION TESTS

In this chapter an index for evaluating selection tests which
is based on the model presented in the previous chapter is developed.

It will be seen that no index of association is needed because the

evaluation index represents a direct measure of the improvement over
chance prediction provided by the test. 1In the final section of this
chapter is presented an index based on the method developed by Brogden

(19:0) which also purports to indicate the utility of selection tests.

Decision-Theoretic Method

The starting point of this method is a payoff matrix. When a
cutoff -on the test is used anl the outcomes to be predicted form a
dichotomy, the payoff matrix is as shown in Figure kL; where Ul’ U2,

u3, and U, are utilities which correspond to erroneous rejection,

I

correct acceptance, correct rejection, and erroneous acceptance, re-

spectively. (See Chapter VI for a thorough explanation of payoff

matrices.)
- Succeed Ul 02
Criterion
(Job A)
Fail U3 Uh
Reject Accept
Decision

Fig. 4.--The standard payoff matrix.
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Assume that 100 persons, selected at random, have been assigned |

to Job A. The utility equation for an obtained table 1is

Us=nU +nU, + n3U3 + U, (1)

where the n's are the frequencies in the corresponding cells of the

contingency table shown in Figure 5. To estimate the utility of e

l-q g
Succeed nl n2 P
: Criterion
1 (Job A)
' Fail n3 B, l-p
i Low High
4 Test

Fig. 5.--The standard 2 X 2 contingency table.
test to the decision-making process, U must be compared with the one
that would result with a test of zero utility, i.e., one providing 4
only chance prediction, Uc' When the observations in the contingency
table are randomly distributed, each cell frequency is the product of
the corresponding narginal probabilities and N. (N= ny + n2 + n3 + nh).
Therefore
U, = (p - Pa)NU) + paU, + (1 + pq - p - q)NU, + (q - PA)NU, (2)
where p is the a priori probability and q is the selection ratio as

shown in Figure 5. Then, the utility of the test is given by the differ-
ence between U and Uc:
- Up=U-U, (3)

This procedure can be simplified and made to fit the usual test

-




34

evaluation situation where nl and n3 are not known. It can be shown

(see Appendix A) that U, is independent of the addition of any con-

T
stant (positive or negative) to the values of both entries in a row
of the payoff matrix. Since only the individuals above the cutoff

on the test, the accepted group, are available to the test evaluater,

the most useful payoff matrix is the one shown in Figure 6.

Succeed o U2 - U1
Criterion
(Job A) -
Fail o Uh U3
Reject Accept
Decision
Fig. 6.--The modified payoff matrix obtained ty subtracting Ul
from the first row and 03 from the second row.
Then,
= - - b
U n2(U2 Ul) + nh(Uu U3) (&)
and
= - + - - .
U, = PaN(u, - U)) + (q - pa)i(u, U3) (5)
Since N and g are unknowns, substitute for g its equivalent,
(n, + nh)/N:
n.+n n.+n
- pll2ia Y - - p)-2b -
U, pt N ,N(U2 u)+ Q@ p)( = )N(Uh u3). (6)
Now N cancels and U, becomes
U, = p(n, + 0, )(U, - U) + (1 - p)lny +n,)(Uy - U3)- (1

Again, the difference between U and Uc equals the gain in utility due

to the test:
=J-U
¢

U
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This U,r 1§ equal to the one obtained prior to changing the pay-
off matrix. Appendix A presenis the mathematical proof.

Example: Assume that 100 men were assigned to electronic train-
ing and that, after training, the graduates and fails are distributed

as in Table 3.

TABLE 3

A HYPOTHETICAL CONTINGENCY TABLE

Graduate 20 60 p= .8
Criterion
Fail 15 5 l-p= .2
Low High
Test

Assume further that the consequences of the four decision-outcome
combinations have been considered (see Chapter VI) and the payoff

matrix shown in Table 4 has been determined.

TABLE 4

A HYPOTHETICAL PAYOFF MATRIX

Graduate -8 10
Criterion

Fail 12 -6

RejJect Accept
Decision

The U equation for this example 1is
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U= 20(-8) + 60(20) + 15(12) + 5(-6)

= =160 + 600 + 180 - 30
= 590.
The U equation for chance prediction is
U, " (.8 - .52)100(-8) + (.52)100(20) + (L + .52 - .8 - .65)
100(12) + (.65 - .52)100(-6)
= 28(-8) + 52(10) + 7(12) + 13(-6)
= 302.
Tane utility of the test is

UT = 590 - 302 = 288.

If the payoff matrix is simplified as shown above it becomes the

one presented in Table 5; then,
U = 60(18) + 5(-18) = 9%
and

u, - .8(60 + 5)(18) + .2(60 + 5)(-18)

= 52(18) + 13(:18)

= T702.

The utility is the same as before:

qr = 990 - 702 = 288.

An assunption explicit in this method is that the cutoff has
been set at the best possible point on the fest. If an inflexible
guota must be filled this assumption is of no consequence. However,
many times it is of value to determine the best possible cutoff, i.e.,

one that balances the positive and negative utilities of correct and

R ——
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TABLE 5

A MODIFIED VERSION OF A HYPOTHETICAL PAYOFF MATRIX

Graduate o} 18
Criterion

Fail o -18

Reject Accept
Decision

erroneous decisions. This point can be easily determined if a payoff
matrix is available. It has been shown in Chapter III to be the point

on the test where

P(F)(U. -u )
RnF AJI , (8)

P(S)(Uy g - Yg o)

(x) =

vhere \(x) 15 the likelihood ratio £(x)/T,(x). 1In the symbolism of
contingency tables and payoff matrices, the right-hand term of Equation
(8) is

(1 - p)v, - u,)

p(U, - U))

The test will be of greatest utility if the cutoff is set at the point

where
(x - p)u, -u)
Aix) = i, (9)
(U, - U))
or, according to Equation (4) in Chapter III, where
(1 - p)P(stx,) (1 - p)U; - U) (10)

pP(lei) p(U2 - Ul)’
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which can be reduced to

P(Slxi) 03 - U,
P(FIx,)

T (11)
-0

Utility Function Method

This method is essentially the one developed by Brogden (1949).
He was concerned, however, with the case in which the test is dichot-
omous and the criterion is continuous. The method is described here
for the case in which both variables are in dichotomous form.

The criterion is translated into utility terms and the "gain"
per man selected is computed. Consider Figure 5 in the preceding
section where the observations are a random sample of size N (N =
o, + n, + n3 + nu) from the population in which the test is to be used.
All N persons have been assigned to job A. Test scores have been
obtained for all N persons prior to their assignment to job A. Cri-
terion scores, succeed and fail, have been assigned on the basis of
performance in job A and translated into utility terms. An individual's

criterion score is his utility in job A. These utility values are here-

after labeled US and qp.

From the ubove definitions the following statistics can be
determined:
+ +
MU ) (n1 nz)Us (n37+ nh)UF (12)
N

Equation (12) can be interpreted as "the mean utility for a random

sample of individuals assigned to job A."
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FEquation (13) can be interpreted as "the average utility for the sub-

nU +n
_2._5__ (13)

Us
group of a random sample of individuals who are high on the test when

they are assigned to job A."

Gy=U-% (14)

The value "GU" defined in Equation (14) is the gain in utility which

would be realized, on the average, by essigning individuals to job A
on the basis of the test, rather than at random.

Example: Assume that 100 Navy recruits were assigned at random
to electronic training and that, after training, the graduates and fails
(non-graduates) are distributed as in Table 3 in the previous section.
Assume further that a graduate is worth 100 utiles {the unit of measure-
ment on the utility scale) to the Navy, and a fail is worth 40 utiles
to the Navy. The total utility of these men to the Navy 1is easily

determined. There are 80 graduates, worth 100 utiles each, or 8,000

utiles altogether. There are 20 fails worth 40 utiles each, or 800
utiles altogether. Thus, the total utility for the group is §,800
utiles. The average utility for the men assigned to electronics training

is

M. =

g™ T100 - 8

For men high on the test, the average utility is similarly determined

to be

y + (60(100) + ()W) . g5 55




Then the gain per man 1s

GU = 95.38 - 88 = 7.38.
The conclusion would be that, provided the manpower pool is large enough,
the Navy will be 7.38 utiles ahead, on the average, for each man assigned
using the test. This figure should of course be reduced by the cost of
testing. This cost will be ignored here because it is negligible per
man in the Navy setting. (Testing takes one day out of a recruit's
schedule, and four men administer a test battery to 500 recruits per
day.)

Since N, n,» and n3 are not known when the test to be evaluated
has been operational for some time, it will help to express the equation
for MU in terms of the a priori probability, p, estimated from previous
research. An equivalent equation 1s

M= pUg+ (1 - p)u (15)

Unlike the method presented in the previous section, this .

method does not conslder the cost of rejecting a person who would

] have succeeded or the value of correctly rejecting a fail. Gu only

reflects the gain per selectee over chance prediction. Therefore, it

is to be expected that G, will provide a lower estima%e of the utility

U
of selection tests than will UT. Data bearing on this point will be
found in Chapter VII.

Gu and UT can be compared directly (mathematically) by making

assunptions regarding the relative size of the utilities in the two

P————

methods. The most obvious is that US - U2 - Ul and UF - Uh - U3.




B g e

N

b1

When this is true UT - (n2 + nh)GU. However, these assumptions are
very restrictive and will be true only rarely. They are not true in

the empirical situation under study. Since US - U2, Us can equal

U2 - Ul only when Ul is zero. Also, since one assumption underlying

the decision-theoretic approach is that U_> Uh (see Chapter II1),

3 U
3 only when UF is negative, which is not true in the

empirical situation under investigation.

can ecual Uh - U

Ancther method that might appeal to some readers is to weight
the cell frequencies by the corresponding utilities and compute the
phi coefficient. This method would have the following drawbacks:
and Uh would

3
probebly be more difficult than determining U, - U3 (see the following

(1) By and n3 are often not known, (2) determining U

chapter), and (3) the resultant coefficient would seem (to the writer)

to te very difficult to interpret.

o




CHAPTER V
MEASUREMENT OF VALUES INHERENT IN TEST EVALUATION

Both of the approaches presented in the preceding chapter--one
using a payoff matrix and the other a converted criterion scale--require
quantitative measurement of value. The relative values of the four
decision-outcome combinations must be determined in the first approach.
The value of a satisfactory assignee relative to an unsatisfactory one
nust be determined in the second approach. In both cases, of central
importance is the value of obtaining a satisfactory person for the
assignment--U2 or Us. It can be thought of as the need for a satis-
factory assignee. This value can be made more meaningfu’ to the insti-
tution using the test by scaling the Jjob areas on need--the need fo:r &
satisfactory assignee. The relative need for additional satisfactory
persons in the Jjob areas can in this way be determined and expressed
quantitatively. Possible ways of scaling the Job areas on need are
described. How the criterion can be converted once this scale ip ob-
tained is shown.

The specific situation in terms of which these methods were
explored, is that of recruit classification in the U. S. Ravy. Selec-
tion tests are used on which cutoffs are established. If a recruit

receives a score above the cutoff he may if he wishes go to the school

asmdals
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for which the test is a selector (subject to qucta }estrictions); ir

he receives a score below the cutoff he will not be sent to that school.

The criterion against which selection tests are currently validated is

school grade. The methods described below are presented in terms of

the dichotomous criterion, graduate-fail, which is based on school
grade. The continuum on which job areas were scaled is therefore the
utility of school graduates to the cperational Navy, or, the need for
school graduates in the corresponding Jjob areas. '

It might be worth mentioning at this point that a side benefit
of this scaling process is that the scale values are vitally needed for
optimal classification of recruits to schools and hence to job areas.
Optimal classification is not possible without a measure of need across
Job areas. The same is true regarding Jcb applicants in other applied

situations.

Scaling Job Areas on Need

Two methods were used, one "indirect" method (probability
comparison) which involves inferring values from choices made by
Judges, and one "direct" method (magnitude estimation) which requires
each Judge to estimate need in each Jjob category. The methods are
designed for different types of judges, namely, classification inter-

viewers and area personnel planners. The indirect method was developed

by the author of this study. He knows of no similar method in the

scaling literature.
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Probability Comparison

Eleven classification interviewers were asked to indicate how
they would classify imaginary recruits with certain probabilities of
success in Navy schools. A questionnaire (see Appendix C) was con-
structed containing items like the following for each pair of schools:

To which school would you assign a recruit if you think his
chances of success are

School A Schoeol B

(a) 80% _ and 6o

(b) 80% . end 708

(c) 80% ______ snda 803

() 8% and 9%

(e) 80% “nd 95%
In this way each respondent's indifference point for each pair of
schools was determined. This is a point in the probability space
where the respondent is indifferent as to the assignment of recruite
to one school or the other. 1Its coordinates are assumed to be the mid-
points of the intervals where the respondent's marks change columns.
(The items should be so constructed to ensure that a crossover always
occurs.)

Establishment of the indifference point for a pair of schools
leads to the fo<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>